Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.174
Filtrar
1.
Aging (Albany NY) ; 16(7): 5905-5915, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517394

RESUMO

Dysfunction of tight junctions such as zonula occludens protein-1 (ZO-1)-associated aggravation of blood-brain barrier (BBB) permeability plays an important role in the progression of stroke. Cepharanthine (CEP) is an extract from the plant Stephania cepharantha. However, the effects of CEP on stroke and BBB dysfunction have not been previously reported. In this study, we report that CEP improved dysfunction in neurological behavior in a middle cerebral artery occlusion (MCAO) mouse model. Importantly, CEP suppressed blood-brain barrier (BBB) hyperpermeability by increasing the expression of ZO-1. Notably, we found that CEP inhibited the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) in the cortex of MCAO mice. Additionally, the results of in vitro experiments demonstrate that treatment with CEP ameliorated cytotoxicity of human bEnd.3 brain microvascular endothelial cells against hypoxia/reperfusion (H/R). Also, CEP attenuated H/R-induced aggravation of endothelial permeability in bEND.3 cells by restoring the expression of ZO-1. Further study proved that the protective effects of CEP are mediated by inhibition of VEGF-A and VEGFR2. Based on the results, we conclude that CEP might possess a therapeutic prospect in stroke through protecting the integrity of the BBB mediated by the VEGF/VEGFR2/ZO-1 axis.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Barreira Hematoencefálica , Transdução de Sinais , Acidente Vascular Cerebral , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proteína da Zônula de Oclusão-1 , Animais , Proteína da Zônula de Oclusão-1/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Humanos , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Linhagem Celular
2.
Aging (Albany NY) ; 16(7): 6135-6146, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546384

RESUMO

Dysfunction of tight junction proteins-associated damage to the blood-brain barrier (BBB) plays an important role in the pathogenesis of ischemic stroke. Lifibrate, an inhibitor of cholinephosphotransferase (CPT), has been used as an agent for serum lipid lowering. However, the protective effects of Lifibrate in ischemic stroke and the underlying mechanism have not been clearly elucidated. Here, we employed an in vivo mice model of MCAO and an OGD/R model in vitro. In the mice models, neurological deficit scores and infarct volume were assessed. Evans Blue solution was used to detect the BBB permeability. The TEER was examined to determine brain endothelial monolayer permeability. Here, we found that Lifibrate improved neurological dysfunction in stroke. Additionally, increased BBB permeability during stroke was significantly ameliorated by Lifibrate. Correspondingly, the reduced expression of the tight junction protein ZO-1 was restored by Lifibrate at both the mRNA and protein levels. Using an in vitro model, we found that Lifibrate ameliorated OGD/R-induced injury in human bEnd.3 brain microvascular endothelial cells by increasing cell viability but reducing the release of LDH. Importantly, Lifibrate suppressed the increase in endothelial monolayer permeability and the reduction in TEER induced by OGD/R via the rescue of ZO-1 expression. Mechanistically, Lifibrate blocked activation of the MLCK/ p-MLC signaling pathway in OGD/R-stimulated bEnd.3 cells. In contrast, overexpression of MLCK abolished the protective effects of Lifibrate in endothelial monolayer permeability, TEER, as well as the expression of ZO-1. Our results provide a basis for further investigation into the neuroprotective mechanism of Lifibrate during stroke.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Proteína da Zônula de Oclusão-1 , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/tratamento farmacológico , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Camundongos , Masculino , Humanos , Quinase de Cadeia Leve de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Infarto da Artéria Cerebral Média/metabolismo
3.
J Neurovirol ; 30(1): 1-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280928

RESUMO

Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-ß were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Fentanila , HIV-1 , Camundongos Transgênicos , Doenças Neuroinflamatórias , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Camundongos , Fentanila/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/patologia , Transtornos Relacionados ao Uso de Opioides/metabolismo
4.
Int Immunopharmacol ; 123: 110698, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517381

RESUMO

Intracerebral hemorrhage (ICH) can result in secondary brain injury due to inflammation and breakdown of the blood-brain barrier (BBB), which are closely associated with patient prognosis. The potential of the heat shock protein 90 (Hsp90) inhibitor 17-DMAG in promoting neuroprotection has been observed in certain vascular diseases. However, the precise role of 17-DMAG treatment in ICH is not yet fully understood. In this study, we found that treatment with 17-DMAG (5 mg/kg) effectively reduced hematoma expansion and resulted in improved neurological outcomes. Meanwhile, the injection of 17-DMAG had a positive effect on reducing BBB disruption in rats with ICH. This effect was achieved by increasing the levels of BBB tight junction proteins (TJPs) such as zo-1, claudin-5, and occludin. As a result, the leakage of EB extravasation, brain edema and IgG in the peri-hematoma tissue were reduced. Furthermore, the injection of 17-DMAG decreased the infiltration of neutrophils into the brain tissues surrounding the hematoma in ICH rats and also reduced the production of proinflammatory cytokines IL-6 and TNF-α. Next, we used integrative mass spectrometry (MS) and molecular docking analysis to confirm that sex determining region Y-box protein 5 (SOX5) is a potential direct target of 17-DMAG in ICH. SOX5 encodes a positive regulator of the PI3K/Akt axis, and treatment with 17-DMAG resulted in a noticeable increase in SOX5 accumulation. To further investigate the role of SOX5, we employed virus-regulated SOX5 silencing and found that suppressing SOX5 blocked the ability of 17-DMAG to suppress neutrophil trafficking. Additionally, silencing SOX5 blocked the protective effects of 17-DMAG on the BBB by inhibiting PI3K, p-Akt, and BBB TJPs levels, which led to an increase in EB and IgG leakage in the peri-hematoma tissue after ICH. Similarly, when SOX5 was knocked down, the protective effects of 17-DMAG were lost. Overall, the results of our study indicate that the injection of 17-DMAG has the potential to mitigate neuroinflammation and prevent the disruption of the BBB caused by ICH, resulting in improved neurological outcomes in rats. These positive effects are attributed to the regulation of SOX5 and activation of the PI3K/Akt pathway. These findings highlight the possibility of targeting SOX5 and the PI3K/Akt pathway as a novel therapeutic approach for ICH.


Assuntos
Barreira Hematoencefálica , Hemorragia Cerebral , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Hematoma , Imunoglobulina G/uso terapêutico , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição SOXD/metabolismo
5.
Environ Sci Technol ; 57(30): 10940-10950, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467138

RESUMO

Urban stormwater runoff frequently contains the car tire transformation product 6PPD-quinone, which is highly toxic to juvenile and adult coho salmon (Onchorychus kisutch). However, it is currently unclear if embryonic stages are impacted. We addressed this by exposing developing coho salmon embryos starting at the eyed stage to three concentrations of 6PPD-quinone twice weekly until hatch. Impacts on survival and growth were assessed. Further, whole-transcriptome sequencing was performed on recently hatched alevin to address the potential mechanism of 6PPD-quinone-induced toxicity. Acute mortality was not elicited in developing coho salmon embryos at environmentally measured concentrations lethal to juveniles and adults, however, growth was inhibited. Immediately after hatching, coho salmon were sensitive to 6PPD-quinone mortality, implicating a large window of juvenile vulnerability prior to smoltification. Molecularly, 6PPD-quinone induced dose-dependent effects that implicated broad dysregulation of genomic pathways governing cell-cell contacts and endothelial permeability. These pathways are consistent with previous observations of macromolecule accumulation in the brains of coho salmon exposed to 6PPD-quinone, implicating blood-brain barrier disruption as a potential pathway for toxicity. Overall, our data suggests that developing coho salmon exposed to 6PPD-quinone are at risk for adverse health events upon hatching while indicating potential mechanism(s) of action for this highly toxic chemical.


Assuntos
Benzoquinonas , Barreira Hematoencefálica , Permeabilidade Capilar , Oncorhynchus kisutch , Fenilenodiaminas , Poluentes Químicos da Água , Animais , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/genética , Oncorhynchus kisutch/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Fenilenodiaminas/análise , Fenilenodiaminas/metabolismo , Fenilenodiaminas/toxicidade , Benzoquinonas/análise , Benzoquinonas/metabolismo , Benzoquinonas/toxicidade , Transcrição Gênica/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Biotransformação
6.
Int J Neurosci ; 133(6): 604-611, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34219583

RESUMO

BACKGROUND: Aquaporin 4 (AQP4), usually expressed at astrocytes end-feet, is a main component of the lymph-lymphatic system and promotes paravascular cerebrospinal fluid-interstitial fluid exchange. Moreover, angiotensin II type 1 (AT1) receptor affects amyloid ß (Aß) levels. This study aimed to detect the effect of AT1 receptor deficiency on the blood-brain barrier (BBB) of traumatic brain injury (TBI) mice and the effect on Aß level and glial lymphatic circulation. METHODS: TBI model was built using AT1 receptor knockout mice (AT1-KO) and C57BL/6 mice (wild type, WT). BBB integrity was detected by Evans blue extravasation. The expression of the astrocytic water channel AQP4 and astrocyte activation were evaluated with immunofluorescence. The expressions of amyloid precursor protein (APP), junction protein zonula occludens protein-1 (ZO-1) and occludin in mice brain were detected by Western blot (WB). Aß levels were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS: AT1 receptor deficiency defended BBB integrity and rescued occludin and ZO-1 decrease in mice brain induced by TBI. AT1-KO mice had less increase of APP expression and Aß 1-42, Aß 1-40 levels compared to WT mice under TBI. Moreover, AT1 receptor deficiency was found to significantly inhibit AQP4 depolarization after TBI. CONCLUSION: T1 receptor deficiency attenuated TBI-induced impairments of BBB by rescuing tight junction proteins and inhibited AQP4 polarization, thus improving the function of glymphatic system to enhance interstitial Aß clearance in TBI mice brain.


Assuntos
Barreira Hematoencefálica , Receptor Tipo 1 de Angiotensina , Receptor Tipo 1 de Angiotensina/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Aquaporina 4/metabolismo , Animais , Camundongos
7.
Sci Rep ; 12(1): 12305, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853902

RESUMO

Patients with obstructive sleep apnea/hypopnea (OSA) are at high risk of cerebrovascular diseases leading to cognitive impairment. The oxidative stress generated by intermittent hypoxia (IH) could lead to an increase in blood-brain barrier (BBB) permeability, an essential interface for the protection of the brain. Moreover, in patients with OSA, blood coagulation could be increased leading to cardiovascular complications. Thrombin is a factor found increased in these populations that exerts various cellular effects through activation of protease activated receptors (PARs). Thus, we have evaluated in an in vitro BBB model the association of IH with thrombin at two concentrations. We measured the apparent BBB permeability, expression of tight junctions, ROS production, HIF-1α expression, and cleavage of PAR-1/PAR-3. Pre-treatment with dabigatran was performed. IH and higher thrombin concentrations altered BBB permeability: high levels of HIF-1α expression, ROS and PAR-1 activation compared to PAR-3 in such conditions. Conversely, lower concentration of thrombin associated with IH appear to have a protective effect on BBB with a significant cleavage of PAR-3. Dabigatran reversed the deleterious effect of thrombin at high concentrations but also suppressed the beneficial effect of low dose thrombin. Therefore, thrombin and PARs represent novel attractive targets to prevent BBB opening in OSA.


Assuntos
Encéfalo , Células Endoteliais , Receptor PAR-1 , Apneia Obstrutiva do Sono , Trombina , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dabigatrana/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor PAR-1/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Trombina/metabolismo
8.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806327

RESUMO

Recent evidence suggests that I2-imidazoline ligands have neuroprotective properties in animal models of neurodegeneration, such as Alzheimer's disease (AD). We recently demonstrated that the I2-ligand BU224 reversed memory impairments in AD transgenic mice and this effect was not because of reductions in amyloid-ß (Aß) deposition. In this study, our aim was to determine the therapeutic potential of the powerful analgesic I2-imidazoline ligand CR4056 in the 5xFAD model of AD, since this ligand has been proven to be safely tolerated in humans. Sub-chronic oral administration of CR4056 (30 mg/kg for 10 days) led to an improvement in recognition memory in 6-month-old 5xFAD mice, but not in wild-type littermates, without affecting Aß levels or deposition. Our results also revealed a change in the profile of microglia by CR4056, resulting in a suppression of pro-inflammatory activated microglia, but increased the density of astrocytes and the expression of ApoE, which is mainly produced by these glial cells. In addition, CR4056 restored fibrinogen extravasation, affecting the distribution of markers of astrocytic end feet in blood vessels. Therefore, these results suggest that CR4056 protects against Aß-mediated neuroinflammation and vascular damage, and offers therapeutic potential at any stage of AD.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Imidazóis , Imidazolinas , Quinazolinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteínas E/biossíntese , Apolipoproteínas E/genética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Imidazóis/farmacologia , Imidazolinas/metabolismo , Ligantes , Camundongos , Camundongos Transgênicos , Quinazolinas/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-35690118

RESUMO

Dysregulated inflammatory responses and blood-brain barrier (BBB) dysfunction are recognized as central factors in the development of psychiatric disorders. The present study was designed to evaluate the effect of niacin on BBB integrity in ketamine-induced model of psychosis. Meanwhile, mepenzolate bromide (MPN), a GPR109A receptor blocker, was used to investigate the role of this receptor on the observed niacin's effect. Male Wistar rats received ketamine (30 mg/kg/day, i.p) for 5 consecutive days and then niacin (40 mg/kg/day, p.o), with or without MPN (5 mg/kg/day, i.p), was given for the subsequent 15 days. Three days before the end of experiment, rats were behaviorally tested using open field, novel object recognition, social interaction, and forced swimming tests. Niacin significantly ameliorated ketamine-induced behavioral deficits, amended gamma aminobutyric acid and glutamate concentration, decreased tumor necrosis factor-α and matrix metallopeptidase 9 levels, and increased netrin-1 contents in the hippocampus of rats. Niacin also augmented the hippocampal expression of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the BBB integrity. Moreover, the histopathologic changes in hippocampal neurons were alleviated. Since all the beneficial effects of niacin in the present investigation were partially abolished by the co-administration of MPN; GPR109A receptor was proven to partially mediate the observed antipsychotic effects of niacin. These data revealed that GPR109A-mediated signaling pathways might represent potential targets for therapeutic interventions to prevent or slow the progression of psychosis.


Assuntos
Barreira Hematoencefálica , Encefalite , Hipolipemiantes , Niacina , Transtornos Psicóticos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/tratamento farmacológico , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Ketamina/farmacologia , Masculino , Niacina/farmacologia , Niacina/uso terapêutico , Transtornos Psicóticos/tratamento farmacológico , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas de Junções Íntimas/metabolismo
10.
Brain Res ; 1788: 147936, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533741

RESUMO

BACKGROUND: Chronic inflammation and blood-brain barrier destruction are interrelated pathological changes in chronic cerebral hypoperfusion (CCH) that promote vascular cognitive impairment (VCI). Therefore, we discussed the impact of the macrophage mediator in resolving inflammation 1 (Maresin 1) on the CCH-induced cognitive impairment and its underlying mechanisms. METHODS: 66 rats were randomly divided into three groups: Sham (n = 22), 2VO (n = 22), and 2VO + MaR1 (n = 22). Rats in three groups received 2-Vessel Occlusion (2VO) or sham operation and received intrathecal delivery of PBS or MaR1. Hippocampal blood flow and Modified neurological severity scores (mNSS) were used to confirm models' effect. Blood-brain barrier (BBB) damage was assessed by Evans blue (EB) leakage experiments and spectrophotometry, the BBB ultrastructure was observed with a transmission electron microscope (TEM), and the expression of zonula occluden-1 (ZO-1), claudin-5, and matrix metalloproteinases-9 (MMP-9) were detected with Enzyme-Linked Immunosorbent Assay (ELISA). Morris water maze (MWM) was used to assess cognitive function. Tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and nuclear factor-κB (NF-κB) expression were examined by Western blotting (WB) and ELISA. Immunofluorescence was used to detect microglia, astrocytes and oligodendrocytes. RESULTS: Rats developed obvious cognitive impairment by CCH. BBB showed EB leakage, ultrastructural destruction, degradation of ZO-1, Claudin-5, and up-regulation of MMP-9. Inactivation of oligodendrocytes, activation of microglia and astrocyte and increased expression of NF-κB, TNF-α, and IL-1ß has been detected. MaR1 administration significantly reverted these changes. CONCLUSION: MaR1 can improve the CCH-induced cognitive impairment. Inflammatory resolution and BBB protection may be the mechanism of MaR1 to prevent CCH-induced cognitive impairment.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Disfunção Cognitiva , Ácidos Docosa-Hexaenoicos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Claudina-5/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
11.
Oxid Med Cell Longev ; 2022: 4834117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251474

RESUMO

Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.


Assuntos
Antioxidantes/metabolismo , Antioxidantes/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Cisteína/metabolismo , Cisteína/farmacologia , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Humanos , Permeabilidade/efeitos dos fármacos , Pró-Fármacos
12.
Oxid Med Cell Longev ; 2022: 9749461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251482

RESUMO

Quercetin, a naturally occurring flavonoid, is mainly extracted from tea, onions, and apples. It has the underlying neuroprotective effect on experimental ischemic stroke. A systematic review and meta-analysis were used to assess quercetin's efficacy and possible mechanisms in treating focal cerebral ischemia. Compared with the control group, twelve studies reported a remarkable function of quercetin in improving the neurological function score (NFS) (P < 0.05), and twelve studies reported a significant effect on reducing infarct volume (P < 0.05). Moreover, two and three studies showed that quercetin could alleviate blood-brain barrier (BBB) permeability and brain water content, respectively. The mechanisms of quercetin against focal cerebral ischemia are diverse, involving antioxidation, antiapoptotic, anti-inflammation, and calcium overload reduction. On the whole, the present study suggested that quercetin can exert a protective effect on experimental ischemic stroke. Although the effect size may be overestimated because of the quality of studies and possible publication bias, these results indicated that quercetin might be a promising neuroprotective agent for human ischemic stroke. This study is registered with PROSPERO, number CRD 42021275656.


Assuntos
Infarto Cerebral/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Quercetina/uso terapêutico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Resultado do Tratamento
13.
Bioengineered ; 13(2): 4441-4454, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112992

RESUMO

Blood-brain-barrier (BBB) disruption is an important pathological characteristic of ischemic stroke (IS) and mainly results from dysfunction of brain vascular endothelial cells and tight junctions. Zebularine is a novel inhibitor of DNA methyltransferase (DNMT). Here, we assessed its effects on BBB disruption in IS. Firstly, we reported that Zebularine maintained BBB integrity in middle cerebral artery occlusion (MCAO) mice by increasing the expressions of zona occludens-1 (ZO-1) and vascular endothelial (VE)-cadherin. Importantly, we found that Zebularine reduced the production of pro-inflammatory cytokines, attenuated brain edema, and improved neurological deficits. In in vitro experiments, the bEnd.3 brain endothelial cells were exposed to oxygen and glucose deprivation/reoxygenation (OGD/R), and the protective effects of Zebularine were assessed. Our findings demonstrated that Zebularine prevented OGD/R-induced cytotoxicity by reducing the release of lactate dehydrogenase (LDH). Additionally, Zebularine protected bEnd.3 cells against OGD/R-induced hyper-permeability and reduction of trans-endothelial electrical resistance (TEER). Notably, we found that treatment with Zebularine activated the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway by increasing the phosphorylation of adenosine monophosphate-activated protein kinase α (AMPKα). Blockage of AMPKα using its specific inhibitor compound C abolished the beneficial effects of Zebularine in mitigating endothelial hyper-permeability by reducing the expressions of ZO-1 and VE-cadherin. These findings suggest that the protective effects of Zebularine against OGD/R-induced endothelial hyper-permeability are mediated by the activation of AMPKα. In conclusion, our study sheds light on the potential application of Zebularine in the treatment of IS.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Caderinas/genética , Citidina/análogos & derivados , Substâncias Protetoras , Proteína da Zônula de Oclusão-1/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Barreira Hematoencefálica/fisiopatologia , Caderinas/metabolismo , Citidina/química , Citidina/farmacologia , Endotélio Vascular/citologia , Inflamação/metabolismo , Camundongos , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Acidente Vascular Cerebral/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
14.
Sci Rep ; 12(1): 2701, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177771

RESUMO

Traumatic brain injury (TBI) is an important cause of death in young adults and children. Till now, the treatment of TBI in the short- and long-term complications is still a challenge. Our previous evidence implied aquaporin 4 (AQP4) and hypoxia inducible factor-1α (HIF-1α) might be potential targets for TBI. In this study, we explored the roles of AQP4 and HIF-1α on brain edema formation, neuronal damage and neurological functional deficits after TBI using the controlled cortical injury (CCI) model. The adult male Sprague Dawley rats were randomly divided into sham and TBI group, the latter group was further divided into neutralized-AQP4 antibody group, 2-methoxyestradiol (2-ME2) group, and their corresponding control, IgG and isotonic saline groups, respectively. Brain edema was examined by water content. Hippocampal neuronal injury was assessed by neuron loss and neuronal skeleton related protein expressions. Spatial learning and memory deficits were evaluated by Morris water maze test and memory-related proteins were detected by western blot. Our data showed that increased AQP4 protein level was closely correlated with severity of brain edema after TBI. Compared with that in the control group, both blockage of AQP4 with neutralized-AQP4 antibody and inhibition of HIF-1α with 2-ME2 for one-time treatment within 30-60 min post TBI significantly ameliorated brain edema on the 1st day post-TBI, and markedly alleviated hippocampal neuron loss and spatial learning and memory deficits on the 21st day post-TBI. In summary, our preliminary study revealed the short-term and long-term benefits of targeting HIF-1α-AQP4 axis after TBI, which may provide new clues for the selection of potential therapeutic targets for TBI in clinical practice.


Assuntos
Aquaporina 4/antagonistas & inibidores , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Córtex Cerebral/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neurônios/metabolismo , 2-Metoxiestradiol/administração & dosagem , Animais , Anticorpos/administração & dosagem , Aquaporina 4/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/lesões , Transtorno Conversivo/tratamento farmacológico , Transtorno Conversivo/etiologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intravenosas , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley
15.
Bioengineered ; 13(2): 4468-4480, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166175

RESUMO

Clinically, the effective treatment for patients with acute ischemic stroke (AIS) is very limited. Therefore, this paper aims to investigate the mechanism how astragalus polysaccharide (APS) exerts protective effect against AIS and provide a new method for the treatment of AIS. Cell surface antigen flow cytometry and immunofluorescence were used to identify M1 and M2 microglia. Western blot was used to evaluate the expression of associated protein. Oxygen-glucose deprivation (OGD) was used to simulate the effect of AIS on rat microglia. The middle cerebral artery occlusion (MCAO) model was established to simulate the effect of AIS in vivo. Evans blue dye (EBD) was used to evaluate the permeability of blood-brain barrier (BBB). Western blot and cell surface antigen flow cytometry results showed that APS promoted the M2 polarization of rat microglia by inhibiting the expression of purinergic receptor (P2X7R). APS reversed the effect of OGD on the polarization of rat microglia M1/ M2 by regulating P2X7R. APS reversed the effect of MCAO on the polarization of rat microglia M1/ M2 in vivo. Furthermore, APS inhibited the expression of P2X7R by promoting the degradation of adenosine triphosphate (ATP) in the cerebral cortex of MCAO rats. In addition, APS contributed to maintain the integrity of BBB. Summarily, APS can reduce brain injury by promoting the degradation of ATP in microglia and inhibiting the expression of P2X7R after AIS.


Assuntos
Astrágalo , AVC Isquêmico/metabolismo , Microglia , Polissacarídeos , Substâncias Protetoras , Trifosfato de Adenosina/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Microglia/citologia , Microglia/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo
16.
Cell Rep Med ; 3(1): 100497, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106509

RESUMO

The blood-brain barrier (BBB) restricts clinically relevant accumulation of many therapeutics in the CNS. Low-dose methamphetamine (METH) induces fluid-phase transcytosis across BBB endothelial cells in vitro and could be used to enhance CNS drug delivery. Here, we show that low-dose METH induces significant BBB leakage in rodents ex vivo and in vivo. Notably, METH leaves tight junctions intact and induces transient leakage via caveolar transport, which is suppressed at 4°C and in caveolin-1 (CAV1) knockout mice. METH enhances brain penetration of both small therapeutic molecules, such as doxorubicin (DOX), and large proteins. Lastly, METH improves the therapeutic efficacy of DOX in a mouse model of glioblastoma, as measured by a 25% increase in median survival time and a significant reduction in satellite lesions. Collectively, our data indicate that caveolar transport at the adult BBB is agonist inducible and that METH can enhance drug delivery to the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Cavéolas/metabolismo , Metanfetamina/farmacologia , Preparações Farmacêuticas/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/ultraestrutura , Cavéolas/efeitos dos fármacos , Cavéolas/ultraestrutura , Doxorrubicina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Glioma/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Wistar
17.
Oxid Med Cell Longev ; 2022: 8188404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222805

RESUMO

We previously discovered that traumatic brain injury (TBI) induces significant perturbations in long noncoding RNA (lncRNA) levels in the mouse cerebral cortex, and lncRNA-AK046375 is one of the most significantly changed lncRNAs after TBI. lncRNA-AK046375 overexpression and knockdown models were successfully constructed both in vitro and in vivo. In cultured primary cortical neurons and astrocytes, lncRNA-AK046375 sequestered miR-491-5p, thereby enhancing the expression of metallothionein-2 (MT2), which ameliorated oxidative-induced cell injury. In addition, upregulated lncRNA-AK046375 promoted the recovery of motor, learning, and memory functions after TBI in C57BL/6 mice, and the underlying mechanism may be related to ameliorated apoptosis, inhibited oxidative stress, reduced brain edema, and relieved loss of tight junction proteins at the blood-brain barrier in the mouse brain. Therefore, we conclude that lncRNA-AK046375 enhances MT2 expression by sequestering miR-491-5p, ultimately strengthening antioxidant activity, which ameliorates neurological deficits post-TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Metalotioneína/genética , MicroRNAs/genética , Estresse Oxidativo/genética , RNA Longo não Codificante/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , RNA Longo não Codificante/genética , Ativação Transcricional
18.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163801

RESUMO

Transgenic mouse models of Alzheimer's disease (AD) overexpress mutations of the human amyloid protein precursor (APP) and presenilin-1 (PSEN1) genes, which are known causes of amyloid pathology in familial AD. However, animal models for studying AD in the context of aging and age-related co-morbidities, such as blood-brain barrier (BBB) disruptions, are lacking. More recently, aged and progeroid mouse models have been proposed as alternatives to study aging-related AD, but the toxicity of murine amyloid-beta protein (Aß) is not well defined. In this study, we aimed to study the potential toxicity of murine Aß on brain endothelial cells and astrocytes, which are important components of the BBB, using mouse brain endothelial cells (bEnd.3) and astrocytes (C8-D1A). Murine-soluble Aß (1-42) oligomers (sAßO42) (10 µM) induced negligible injuries in an endothelial monolayer but induced significant barrier disruptions in a bEnd.3 and C8-D1A co-culture. Similar results of endothelial perturbation were observed in a bEnd.3 monolayer treated with astrocyte-conditioned medium (ACM) generated by astrocytes exposed to sAßO42 (ACM-sAßO42), while additional exogenous sAßO42 did not cause further damage. Western blot analysis showed that ACM-sAßO42 altered the basal activities of vascular endothelial growth factor receptor 2 (VEGFR2), eNOS, and the signaling of the MEK/ERK and Akt pathways in bEnd.3. Our results showed that murine sAßO42 was moderately toxic to an endothelial and astrocyte co-culture. These damaging effects on the endothelial barrier were induced by deleterious soluble factors released from astrocytes, which disrupted endothelial VEGFR2 signaling and perturbed cell survival and barrier stabilization.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Astrócitos/citologia , Barreira Hematoencefálica/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/toxicidade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Modelos Biológicos
19.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163922

RESUMO

Salvia miltiorrhiza Bunge (SM) has been extensively used in Alzheimer's disease treatment, the permeability through the blood-brain barrier (BBB) determining its efficacy. However, the transport mechanism of SM components across the BBB remains to be clarified. A simple, precise, and sensitive method using LC-MS/MS was developed for simultaneous quantification of tanshinone I (TS I), dihydrotanshinone I (DTS I), tanshinone IIA (TS IIA), cryptotanshinone (CTS), protocatechuic aldehyde (PAL), protocatechuic acid (PCTA), and caffeic acid (CFA) in transport samples. The analytes were separated on a C18 column by gradient elution. Multiple reaction monitoring mode via electrospray ionization source was used to quantify the analytes in positive mode for TS I, DTS I, TS IIA, CTS, and negative mode for PAL, PCTA, and CFA. The linearity ranges were 0.1-8 ng/mL for TS I and DTS I, 0.2-8 ng/mL for TS IIA, 1-80 ng/mL for CTS, 20-800 ng/mL for PAL and CFA, and 10-4000 ng/mL for PCTA. The developed method was accurate and precise for the compounds. The relative matrix effect was less than 15%, and the analytes were stable for analysis. The established method was successfully applied for transport experiments on a BBB cell model to evaluate the apparent permeability of the seven components.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Permeabilidade da Membrana Celular , Endotélio Vascular/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cromatografia Líquida , Endotélio Vascular/efeitos dos fármacos , Humanos , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Salvia miltiorrhiza , Espectrometria de Massas em Tandem
20.
J Enzyme Inhib Med Chem ; 37(1): 792-816, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35193434

RESUMO

In this study, a series of naringenin-O-alkylamine derivatives were designed and obtained by introducing an alkylamine fragment into the naringenin skeleton. The in vitro biological activity results revealed that compounds 5f and 7k showed good antioxidant activity with ORAC values of 2.3eq and 1.2eq, respectively. Compounds 5f and 7k were reversible and excellent huAChE inhibitors with IC50 values of 0.91 µM and 0.57 µM, respectively. Moreover, compounds 5f and 7k could inhibit self-induced Aß1-42 aggregation with 62.1% and 43.8% inhibition rate, respectively, and significantly inhibited huAChE-Aß1-40 aggregation with 51.7% and 43.4% inhibition rate, respectively. In addition, compounds 5f and 7k were selective metal chelators and remarkably inhibited Cu2+-induced Aß1-42 aggregation with 73.5% and 68.7% inhibition rates, respectively. Furthermore, compounds 5f and 7k could cross the blood-brain barrier in vitro and displayed good neuroprotective effects and anti-inflammatory properties. Further investigation showed that compound 5f did not show obvious hepatotoxicity and displayed a good hepatoprotective effect by its antioxidant activity. The in vivo study displayed that compound 5f significantly improved scopolamine-induced mice memory impairment. Therefore, compound 5f was a potential multifunctional candidate for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aminas/farmacologia , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Flavanonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Aminas/síntese química , Aminas/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Flavanonas/síntese química , Flavanonas/química , Humanos , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...